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Analytic and computational methods developed within statistical physics have found applications in
numerous disciplines. In this Letter, we use such methods to solve a long-standing problem in statistical
genetics. The problem, posed by Haldane and Waddington [Genetics 16, 357 (1931)], concerns so-called
recombinant inbred lines (RILs) produced by repeated inbreeding. Haldane and Waddington derived the
probabilities of RILs when considering two and three genes but the case of four or more genes has remained
elusive. Our solution uses two probabilistic frameworks relatively unknown outside of physics: Glauber’s
formula and self-consistent equations of the Schwinger-Dyson type. Surprisingly, this combination of
statistical formalisms unveils the exact probabilities of RILs for any number of genes. Extensions of the
framework may have applications in population genetics and beyond.
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Statistical physics methods have fertilized numerous
disciplines including complex networks [1], theoretical
computer science [2], and Bayesian statistical inference
[3]. They have also led to novel results in population
genetics [4]. Here we use those methods to tackle an old
problem of genetics involving recombinant inbred lines
(RILs). A RIL is produced via repeated inbreeding of
animals or plants until all genetic variability has been
removed (see Fig. 1). The individuals produced in this way
constitute a stable and permanently shareable genetic
resource that is particularly useful for the identification
of genes contributing to traits of interest [5]. These proper-
ties explain why production and exploitation of large
populations of RILs have become major endeavors in
the search for genetic determinants of diseases in mammals
[6] and of agricultural traits in crops [7].
In this Letter, we consider plant RILs that are produced

using single seed descent (SSD) which is an extreme form
of inbreeding. One starts with two founding parents that are
“homozygous” everywhere, i.e., for each pair of chromo-
somes, the two associated alleles are identical. This
situation is schematically represented in Fig. 1 using the
generation label F0 and by displaying a single pair of
chromosomes for each plant. The two parents being
genetically different, their chromosomal contents are
shown using different shadings. These two parents are
then cross pollinated: one parent produces a female gamete
while the other parent produces a male gamete. The fusion
of the two gametes will lead to the single F1 plant at the
next generation. Consider going now from generation F1 to
generation F2. Cross pollination is replaced by self-
pollination: the single F1 plant produces both the female

gamete (g) and the male gamete (g0). This capability arises
in almost all plants of agricultural interest. A subtlety now
arises as shown in Fig. 1: a gamete can form a mosaic of the
two chromosomes from which it is built. This phenomenon
follows from the formation of “crossovers” between the
two chromosomes during gamete formation. It can occur
at all generations but in the case of going from F0 to F1 it
simply has no visible effects. The process of producing a
RIL is based on iterating the step when going from F1 to
F2: self-pollination of a single Fn plant is used to produce a
seed which develops into the single Fnþ1 plant, thus the
term single seed descent. Note that once a chromosomal
region has become homozygous (in the figure this corre-
sponds to having locally the same shading for the two
chromosomes) it stays so. (If a region is not homozygous,
one says it is heterozygous.) Thus, because of chance, after
enough generations, the plant becomes homozygous every-
where. The chromosomes of the resulting RIL are mosaics
of the two parental chromosomes at F0. Given many such
RILs (cf. Ref. [8]), statistical inference can be used to
identify the chromosomal regions responsible for parental
differences in traits of interest [7].
Experimentally, one often determines a plant’s genetic

content at discrete positions or “loci”; we assign these an
index i ranging from 1 to L (from left to right along the
chromosome). Denote by a the allelic type (white) of the
first parent and by A that (shaded) of the second parent.
Then the genotype of parent a is ða1=a1; a2=a2;…; aL=aLÞ
and that of parent A is ðA1=A1; A2=A2;…; AL=ALÞ where
the −i=−i notation provides the allelic type on the two
chromosomes for “locus” i. Figure 1 illustrates a case with
L ¼ 3 for which both gametes have crossovers when going
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from F1 to F2. The allelic type of the first gamete changes
when going from locus two to locus three; one says that the
interval (two, three) is “recombinant” or that there has been
a recombination event between the two loci in that gamete.
In 1918 Robbins [9] determined the probabilities of

two-locus RIL genotypes produced using SSD. Then, in
1931, Haldane and Waddington [10] simplified that

derivation. Based on meiotic recombination rates indepen-
dent of allelic content and of sex, they provided the
celebrated Haldane-Waddington formula [10] giving the
“RIL recombination rate” between two loci i and j, i.e.,
Ri;j ¼ 2ri;j=ð1þ 2ri;jÞ where ri;j is the ði; jÞ recombina-
tion rate per meiosis. Probabilities of all two-locus RIL
genotypes are then directly obtained using the definition of
the RIL recombination rate: Ri;j¼Pðai=ai;Aj=AjÞþ
PðAi=Ai;aj=ajÞ which is the probability that the alleles
will be recombined after enough inbreeding. By symmetry,
Pðai=ai;Aj=AjÞ¼PðAi=Ai;aj=ajÞ¼Ri;j=2 and Pðai=ai;
aj=ajÞ¼PðAi=Ai;Aj=AjÞ¼ ð1−Ri;jÞ=2 ([11]).
In 1931 Haldane and Waddington [10] also showed that

the two-locus RIL probabilities determine the ones for three
loci. Over time, the results for two and three loci have been
refined or extended to other kinds of crosses [12], but the
case of four or more loci has proved to be inextricable. This
fact appears as particularly puzzling since going from two
to three loci is very simple and involves just standard
algebra (see Fig. 2(a) and Ref. [13]). The point is that
two- and three-locus RIL probabilities do not determine the
four-locus probabilities (see Fig. 2(b) and Ref. [13]). Finding
and exploiting this missing information has prevented
researchers from extending the Haldane-Waddington result
for over 80 years. In this Letter, we provide a solution to this
challenge, deriving exact analytic formulas for the prob-
abilities of RIL genotypes having any number of loci. The
breakthrough is based on using two probabilistic frame-
works borrowed from physics: the Schwinger-Dyson
equations [14,15] and Glauber’s formula [16].
Given that a RIL is homozygous at every locus, its

genetic content can be specified in terms of a vector ~S of
spin variables Si, i ¼ 1; 2;…; L. Our convention, motivated
by Ref. [17], is Si ¼ 1 if locus i is ai=ai and Si ¼ −1 if it is
Ai=Ai. This notation is particularly convenient for writing
the probability of any RIL genotype ~S in terms of averages
of spin products. For example, if there is a single locus i,
the probability that the spin has value si is PðSi ¼ siÞ ¼
E½ð1þ siSiÞ=2� where the average or expectation E½� � ��
is taken over the distribution of the random variable Si.

FIG. 2. The two-and three-locus RIL probabilities do not completely specify the four-locus RIL probabilities. (a) The matrix of the
linear equations relating the three-locus probabilities to two-locus probabilities (via the Ri;j’s) has rank 4. (b) A matrix giving linear
equations relating the four-locus probabilities to two- and three-locus probabilities always has rank at most 7.

FIG. 1. Production of one recombinant inbred line. A chromo-
some pair is followed in each plant. A new generation results
from two gametes that may mix genetic content as shown via g
and g0. Tracking of allelic types (a and A) is displayed at three
positions until no further change is possible.
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For L loci, the generalization of this formula, due to
Glauber [16], is

PðfS1 ¼ s1; S2 ¼ s2;…; SL ¼ sLgÞ

¼ E

��
1þ s1S1

2

��
1þ s2S2

2

�
…

�
1þ sLSL

2

��
; ð1Þ

where E½� � �� is the average over all possible RIL genotypes
with their corresponding probabilities. Note that Eq. (1) is
exact, the Si need not be independent. The problem of
finding the probabilities of all RIL genotypes is then solved
if one can determine the expectation values of all spin
products. When expanding the right-hand side of Eq. (1),
expectation values of k-allelic products come with a sign
equal to the product of the corresponding si values. For
instance for L ¼ 4, Eq. (1) leads to

PðfS1 ¼ s1; S2 ¼ s2; S3 ¼ s3; S4 ¼ s4gÞ

¼ 1

16

�
1þ

X
i<j

sisjE½SiSj� þ s1s2s3s4E½S1S2S3S4�
�
;

ð2Þ

where we have used the fact that the expectation of a
product of an odd number of Si ’s vanishes because of
the global invariance Pð~SÞ ¼ Pð−~SÞ, corresponding to
exchanging all a’s and A’s in RIL genotypes.
To explain our approach, we begin by solving the four-

locus case (L ¼ 4). Equation (2) shows that we need the
expectations of 2- and 4-spin products. The 2-spin products
are given by E½SiSj� ¼ 1 − 2Ri;j [11] so the only unknown
is the 4-spin product E½S1S2S3S4� in direct correspondence
with the situation described in Fig. 2(b). Our strategy to
compute E½S1S2S3S4� is based on classifying the ways of
going from the first generation of children (F1) all the way
to the RIL according to the genotype arising at the second
generation of children (F2) (Fig. 1). Performing this
classification leads to

E½S1S2S3S4� ¼
X
g

X
g0

PðgÞPðg0ÞEg;g0 ½S1S2S3S4�; ð3Þ

where the sum is over all F2 genotypes [each specified by
the genotypes of its female (g) and male (g0) gametes], PðgÞ
is the probability of producing a gamete of genotype g
when going from F1 to F2, and Eg;g0 ½S1S2S3S4� is the
expectation of the 4-spin product when starting the
inbreeding with an F2 individual of genotype ðg; g0Þ.
Now the key point is that Eg;g0 ½S1S2S3S4� is equal to
E½S10S20S30S40� when starting with the F1 if one uses the
following substitution rules for the Si0. First, if locus i is
homozygous in G ¼ ðg; g0Þ and has value si, then all
descendants of G also have that value, so replace Si0 by
si. Second, if locus i is heterozygous in G and is of the type
ai=Ai, the situation is the same as at F1, so replace Si0 by Si.
Finally, if locus i is heterozygous in G and is of the type

Ai=ai, i.e., it is reversed compared to the F1, replace Si0 by
−Si. These simple rules provide the way to relate expect-
ations starting with an F2 genotype to expectations starting
with the F1 genotype. The self-consistent Eq. (3) then
becomes a Schwinger-Dyson (SD) equation [14,15] where
the expectation value of the 4-spin product (on the left) is
expressed (on the right) in terms of itself and of lower order
spin-product averages. By summing the contributions of
the 44 different F2 genotypes in Eq. (3), we can extract the
value for E½S1S2S3S4� and then our problem is solved, i.e.,
Eq. (2) provides all four-locus probabilities.
In Eq. (3) the sum over all F2 genotypes involves the

probabilities PðgÞ. If the crossovers arise independently as
in Haldane’s no interference model [18], then the summa-
tion in Eq. (3) can be performed by hand and very elegantly
as follows. First we regroup the F2 genotypes into classes
according to which of their loci are heterozygous. For each
class the associated contributions can be summed explicitly
by mapping to a tree. To see how this works, consider for
instance calculating the factor multiplying E½S1S2S3S4� on
the right-hand side of the SD equation. This factor is
obtained by considering the class of F2 genotypes that are
heterozygous (h) at all four loci and calculating the sum
over those F2 genotypes of the probability [PðgÞPðg0Þ]
times the sign from the substitution rule. Figure 3 repre-
sents the mapping of these genotypes, their probabilities
and their signs onto a tree for the case where the first locus
is of the type a1=A1. The loci are ordered from left to right

FIG. 3 (color online). Tree mapping of F2 genotypes. F2

genotypes map to paths from root to leaves of trees. The sign
of a genotype is given on the right and its weight is the product of
factors along the path. Summing over all paths of this tree leads to
the factors shown at bottom.
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and each F2 genotype can be identified with a path from the
left-most node to one of the right-most nodes (leaves of the
tree). Because of the assumption of no crossover interfer-
ence, recombination arises independently in each interval
so that the probability of a genotype can be written as a
product of factors, one for each interval. For any specified
interval in Fig. 3, the two gametes are either both non-
recombinant, leading to a factor ð1 − riÞ2, or both recombi-
nant, leading to a factor r2i , where ri is the recombination
rate for a single meiosis in the interval ði; iþ 1Þ. The
probability of a F2 genotype is then given by the product of
such factors along the path as displayed in Fig. 3, times 1=4
coming from the probability that the first locus is of the
type a1=A1. Adding the contributions of all genotypes of
the tree shown in Fig. 3 can be done by recurrence [19].
Using the fact that the tree rooted at A1=a1 gives rise to the
same calculation as for Fig. 3, one concludes that the class
of heterozygous genotypes on the right-hand side of Eq. (3)
contributes a total of ð1 − 2r1Þ½ð1 − r2Þ2 þ r22�ð1 − 2r3Þ=2
times E½S1S2S3S4�.
The other classes can be treated by the same mapping

technique. Consider for instance the class of F2 genotypes
homozygous at all loci. It is easy to see that it leads to
exactly the same result as the class just treated except that
E½S1S2S3S4� is replaced by 1 [19]. Going on to the classes
which are mixed (with both homozygous and heterozygous
loci), only those having two adjacent loci homozygous and
two adjacent loci heterozygous lead to nonzero contribu-
tions [19]. In those cases, between the second and third
locus, there is one and only one recombinant gamete,
whereas in the previous calculation in that interval g and g0

were both recombinant or both non-recombinant. Thus the
previously derived term ½ð1 − r2Þ2 þ r22� has to be replaced
by 2r2ð1 − r2Þ here (Fig. S2 in Ref. [19]). Collecting the
results from all classes of F2 genotypes leads to the four-
locus SD equation:

E½S1S2S3S4� ¼
ð1 − 2r1Þðð1 − r2Þ2 þ r22Þð1 − 2r3Þ

2

× ðE½S1S2S3S4� þ 1Þ

þ ð1 − 2r1Þð2ð1 − r2Þr2Þð1 − 2r3Þ
2

× ðE½S1S2� þ E½S3S4�Þ: ð4Þ

Although the expectation of the 4-spin product arises on
both sides of this equation, extracting this quantity in terms
of the averages of 2-spin products is straightforward. In
summary, from Eq. (2), using Eq. (4) and the formula
E½SiSj� ¼ 1 − 2Ri;j, one obtains the long-searched-for
exact analytic expressions for four-locus RIL genotype
probabilities.
The overall framework, including the mapping of F2

genotypes to trees, extends to any number of loci. For five

loci, no new SD equation is needed since the expectation
E½S1S2…SL� vanishes when L is odd. For six or seven loci,
Eq. (1) shows that we need expectations of 2-, 4- and 6-spin
products. We have determined the 2- and 4-spin products
above, and the mapping onto trees for computing the 6-spin
product follows exactly the same logic as for the 4-spin
product [20]. More generally, when going from L to Lþ 2
loci, the only new unknown is the expectation of the
product of all spins. Interestingly, the SD equations follow
simple patterns [21]. Based on these patterns, we have
written a computer program that takes as input the list of
genetic positions of L loci and computes the probability of
all L-locus RIL genotypes [22]. Lastly, the approach is easily
extended to the case where male and female recombination
rates differ [23].
These exact rather than approximate probabilities of

multilocus genotypes could be used in a number of
situations in which RIL probabilities are needed. For
instance when building genetic maps, the ordering of
markers relies on comparing likelihoods of multilocus
genotypes, generally approximated by products of pairwise
recombination rates over putatively adjacent loci [24].
The same approximation is routinely applied in algorithms
for detection of quantitative trait loci using interval or
composite interval mapping [25]. Similarly, when geno-
types or haplotypes must be inferred or imputed because of
missing information or because markers are not sufficiently
dense [26], determining the most likely assignment requires
comparing multilocus genotype probabilities. Moving
beyond RILs, it is possible that our framework will unveil
ways to perform calculations of multilocus probabilities in
more general population genetics contexts [27] where the
main difficulty comes from having a potentially infinite
number of generations. That situation arises when one is
interested in fixation probabilities, steady-state multilocus
frequencies, or distribution times of the most recent common
ancestor [28–30].
In 1931 Haldane and Waddington [10] provided

the exact two-locus probabilities for successive gener-
ations (F2, F3, …) based on recursion formulas from
which they were able to extrapolate to RILs, i.e., to an
infinite number of generations. In the present work,
we have instead directly treated the RIL situation,
exploiting Eq. (1) due to Glauber [16] and self-
consistent equations of the Schwinger-Dyson type
[14,15]. A posteriori, it is quite surprising that these
mathematical tools had not been used before to general-
ize the Haldane-Waddington formula. Perhaps just as
surprising is their remarkable efficiency for solving this
long-outstanding problem.
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